Estimation

- Estimation
- Review of Central Limit Theorum
- Confidence Levels

Confidence Intervals

- Confidence Interval Precision
- Standard Error of the Mean
- Sample Size
- Standard Deviation

Estimation Defined:

Estimation - A process whereby we select a random sample from a population and use a sample statistic to estimate a population parameter.

Point and Interval Estimation
Point Estimate - A sample statistic used to estimate the value of a population parameter (for example, a specific mean pabtained from sample and used to estimate the population mean)

Confidence interval (interval estimate) A range of values defined by the A range of values dee
confidence level within which the
population parameter is estimated to fall.
population parameter is estimated to fall.
Confidence Level - The likelihood, expressed as a percentage or a
probability, that a specified interval will contain the population parameter.

Applying Properties of the Sampling Distribution

If the sample mean is

 $\$ 50 K, N=100$, and the standard deviation for the ample is $\$ 7 \mathrm{~K}$, we can error and then use it:We know that 95% of the sample means in a sampling distribution would fall between two standard errors of the mean:

Applying Properties of the Sampling Distribution
Therefore we can say that there is a 95% chance that the true population mean falls
 errors of the mean.

Or, in other words, we are 95\% confident that the population mean falls between two SEs of the sample mean.

Applying Properties of the Sampling Distribution

Applying these

assumptions to the data
has the following results
We are 95% confident that the average income for the population ranges between:
$\$ 48,600$ and $\$ 51,400$
 2 Standard Errors $=\$ 1,400$

Example of Applying the Properties of the Sampling Distribution

We can be 99\%
confident that the
average income for the population ranges
between:
$\$ 47,900$ and $\$ 52,100$.

Figue 10.3

Applying Properties of the Sampling Distribution

Notice that in the example we:

1. assumed the sampling distribution has a normal distribution and
2. Applied the characteristics of the normal curve (i.e., 2 SEs will include 95% of the cases) to our theoretical sampling distribution in order to estimate the population mean.

How can we make these assumptions?

The Central Limit Theorem

The CLT tells us that, even if a population distribution is skewed or flat (like multiple roles of a die), we know that the sampling distribution drawn from that population is normally distributed (such as plotting the sample means from repeatedly rolling a die 10 times and calculating the averages).

The CLT also tells us that a single sample of sufficient size (at least 50 cases) will often mirror the sampling distribution.

The Central Limit Theorem

Thus, the CLT clarifies for us:
**researchers can use a single sample to construct confidence intervals around sample estimates (such as the sample mean) with specific confidence levels associated with the confidence intervals.

Confidence Levels:

Confidence Level - The likelihood, that a specified interval will contain the population parameter.

- 95% confidence level - there is a. 95 probability that a specified interval DOES contain the population mean. In other words, there are 5 chances out of 100 (or 1 chance out of 20) that the interval DOES NOT contains the population mean.
99% confidence level - there is 1 chance out of 100 that the interval DOES NOT contain the population mean.

Constructing a Confidence Interval (CI)

The sample statistic is the point estimate of the population parameter (such as the mean).

- The sample standard deviation is the point estimate of the population standard deviation.
- The standard error (or the standard deviation of the sampling distribution) deviation of the sampling distribution) makes it possible to state the probability
that an interval around the point estimate contains the actual population parameter.

The Standard Error
is the standard deviation for a sampling distribution

Estimating standard errors
Below is the formula for estimating the standard error of the sampling distribution (this is also referred to as the standard deviation of the sampling distribution).

```
Standard Error
of Sampling
Distribution
(standard deviation of population)
```

Estimating standard errors
Since the standard error of the sampling distribution is generally not known because we do not have the SD of the population, we usually work with the estimated standard error:

```
\[
\begin{aligned}
& \text { Estimated Standard } \\
& \text { Error Based On } \left.=S_{\bar{Y}}=\frac{S_{Y}}{\sqrt{N}} \quad \begin{array}{l}
\text { (standard } \\
\text { of sample) } \\
\text { Large, Random }
\end{array}\right) .
\end{aligned}
\]
```

Determining a
Confidence Interval (CI)

$$
C I=\bar{Y} \pm Z\left(s_{\bar{Y}}\right)
$$

where:
$\overline{\mathrm{Y}}=$ sample mean (estimate of u_{y})
$Z=Z$ score
$S_{\bar{Y}}=$ estimated standard error

Determining a
Confidence Interval (CI)

$$
C I=\bar{Y} \pm Z\left(s_{\bar{Y}}\right)
$$

In our previous examples we used this formula by:
(1) calculating the $S E(S D / \sqrt{N})$,
(2) multipling it by Z (two or three) and then
(3) Subtracting or adding this sum to the mean to obtain the confidence intervals.

Estimation Defined:

Estimation - A process whereby we select a random sample from a population and use a sample statistic to estimate a population parameter.

Confidence Interval and Risk Taking

$$
\bar{Y} \pm Z\left(\frac{S_{Y}}{\sqrt{N}}\right)
$$

Confidence Level - Increasing our confidence level from 95% to 99% means we are less willing to draw the wrong conclusion

- we take a 1% risk (rather than a 5%) that the specified interval does not contain the true population mean.

Confidence Interval and Risk Taking

$$
\bar{Y} \pm Z\left(\frac{s_{Y}}{\sqrt{N}}\right)
$$

If we reduce our risk of being wrong, then we need a wider range of values... So the interval becomes less precise.

Confidence Interval Width
Figure 12.1
Relationship Between Confidence Level and z for 95 and 99 Percent Confidence Intervals
95\% Conlidence Level
$\xrightarrow{-1.96\left(\sigma_{0}\right)+1.96\left(\sigma_{n}\right)}$.
99% Conifidence Level
$-2.58\left(\sigma_{\mathrm{F}}\right) \quad+2.58\left(\mathrm{o}_{\mathrm{o}}\right)$
$-2.58\left(\sigma_{\mathrm{o}}\right) \cdot+2.58\left(\mathrm{o}_{\mathrm{p}}\right)$
${ }_{\text {Mample }}$
$\underset{\substack{\text { Sample } \\ \text { Mean }}}{ }$

Confidence Interval Z Values

Table 12.1

Confidence Levels and Corresponding \mathbf{Z} Values	
Confidence Level	\boldsymbol{z} Volue
90%	1.65
95%	1.96
99%	2.58

Confidence Interval Risk

$$
\bar{Y} \pm Z\left(\frac{s_{Y}}{\sqrt{N})}\right.
$$

Sample Size - Larger samples result in smaller standard errors, and therefore, in sampling distributions that are more clustered around the population mean.

A more closely clustered sampling distribution indicates that our confidence intervals will be narrower and more precise.

Confidence Interval Risk

$$
\bar{Y} \pm Z\left(\frac{S_{Y}}{\sqrt{N}}\right)
$$

Standard Error - Smaller sample standard deviations result in smaller, more precise confidence intervals.
(Unlike sample size and confidence level, the researcher plays no role in determining the standard deviation of a sample.)

Example: Determining CIs for Hispanic Migration and Earnings

From 1980 Census data:

Cubans had an average income of $\$ 16,368$ $\left(S_{y}=\$ 3,069\right), N=3895$
Mexicans had an average income of $\$ 13,342$ $\left(S_{y}=\$ 9,414\right), N=5726$
Puerto Ricans had an average income of $\$ 12,587$ ($\mathrm{S}_{y}=\$ 8,647$), $\mathrm{N}=5908$

Example: Determining 95\% CIs for Average Cuban Earnings

Cubans

1. Standard error $=3069 / \sqrt{3895}$
$=(3069 / 62.4)=49.17$
2. 1.96 * $49.17=\$ 96.37$ (2 standard errors)
3. $\$ 16,368-\$ 96.37$ to $\$ 16.368+\$ 96.37$ (mean-SE to mean+SE)
4. $=16,272$ to 16,464 (95% confident the mean income of Cubans is within this range)

In Sum:

Now you can estimate a population's parameter (such as the mean) based on a sample.

Simply calculate the standard error, determine the level of confidence that you want, and then calculate the confidence intervals using the given formula.

Procedures for Estimating Proportions or Percentages within a Population

The procedures for determining the confidence intervals surrounding a percentage are slightly different
than determining the CIs surrounding a mean.

For Example

Based on a random sample of 1,512 adults, the percentage of our sample opposed to gay marriage was 60

What would we estimate the CIs
to be for the population if we want to be 95% confident?

Example: a random sample of 1,512 adults, the percentage opposed to gay marriage was 60.

$$
\begin{aligned}
& \text { The formula is: } \\
& C I=p \pm Z(S p)
\end{aligned}
$$

Where:
$C I=$ the confidence interval $p=$ the observed sample percentage
$Z=$ the level of confidence desired $S p=$ the estimated standard error

Where the formula for the standard error of the percentage is:
$S p=$ the estimated standard error
or:
$S p=\sqrt{\frac{(p)(1-p)}{N}}$
Where:
$P=$ sample percentage
N = number of cases

Applying the Example: a random sample of 1,512 adults, the percentage opposed to gay marriage was 60 . What are the CIs with 95% confidence?
$S p=\frac{(.60)(1-.60)}{1.512}=\sqrt{.000158}=.012$ 1512

The formula is:
$C I=p \pm Z(S p)$
or
$C I=.60 \pm 1.96$ (.01)
or
.58 and .62

